MAP Kinase Cascades in Arabidopsis Innate Immunity
نویسندگان
چکیده
Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate, and salicylate. In a few cases, cascade components have been directly linked to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity. This mini-review discusses recent progress in this field with a focus on the Arabidopsis MAPKs MPK3, MPK4, MPK6, and MPK11 in their apparent pathways.
منابع مشابه
EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity
Mitogen-activated protein (MAP) kinase signaling cascades play important roles in the regulation of plant defense. The Raf-like MAP kinase kinase kinase (MAPKKK) EDR1 negatively regulates plant defense responses and cell death. However, how EDR1 functions, and whether it affects the regulation of MAPK cascades, are not well understood. Here, we showed that EDR1 negatively regulates the MKK4/MKK...
متن کاملAttenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN-SENSITIVE 2 (FLS2) induces the...
متن کاملIntercepting host MAPK signaling cascades by bacterial type III effectors.
The evolutionarily conserved MAP kinase (MAPK) cascades play essential roles in plant and animal innate immunity. A recent explosion of research has uncovered a myriad of virulence strategies used by pathogenic bacteria to intercept MAPK signaling through diverse type III effectors injected into host cells. Here, we review the latest literature and discuss the various mechanisms that pathogenic...
متن کاملAn Innate Immunity Pathway in the Moss Physcomitrella patens.
MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMP...
متن کاملThe Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1.
Pseudomonas syringae delivers a plethora of effector proteins into host cells to sabotage immune responses and modulate physiology to favor infection. The P. syringae pv. tomato DC3000 effector HopF2 suppresses Arabidopsis innate immunity triggered by multiple microbe-associated molecular patterns (MAMP) at the plasma membrane. We show here that HopF2 possesses distinct mechanisms for suppressi...
متن کامل